Solutions Chapter 2, Digital Design, 4 Edition
Download Solutions Chapter 2, Digital Design, 4 Edition
Preview text
Solutions Chapter 2, Digital Design, 4th Edition
2.2) a) x b) (x + y)(x + y’) = x + xy + xy’ + yy’ = x c) xyz + x’y + xyz’ = xy + x’y = y d) (A + B’)’ (A’ + B’)’ = A’B’AB = 0 e) xy(z + z') + x'y(z + z')=xy1 + x'y1= xy + x'y = y(x+x’) = y f) xx' + xy' + xz + x'y + yy' + yz + x'z' + y'z' + zz'= 0 + xy' + xz + x'y + 0 + yz + x'z' + y'z' +0 =
(xy'+ x'y)+ (xz+ x'z') + (yz+y'z')= (xy)+(xz)’+(yz)’
2.3) a) ABC + A’B + ABC’ = AB + A’B = B b) x’yz + xz = (x + x’y)z = (x + y)z c) (x + y)’ (x’ + y’) = x’y’(x’ + y’) = y’(x’ + x’y’) = x’y’ + x’y’ = x’y’ d) xy + x(wz + wz’) = xy + xw = x(y + w) e) (BC’+A’D) (AB’+CD’) = (BC’AB’+BC’CD’+A’DAB’+A’DCD’) = (0 + 0 + 0 + 0) = 0 f) xx' + xz' + x'y' + y'z' + x'z' + z'z' = y'(x' + z')+ z' = x'y' +y’z’+z’ = x’y’+z’
2.4) a) A’C’ + ABC + AC’ = C’ + ABC = AB + C’ b) (x’y’+z)’+z+xy+wz = (x+y)z’+z+xy+wz = x+y+z+xy+wz = x + y + z c) A’B(D’ + C’D) + B(A + A’CD) = B(A’D’ + A’C’D + A + A’CD) = B(A’D’ + A + A’D) = B(A’ + A) = B d) (A’+C)(A’+C’)(A+B+C’D) = (A’+A’C+A’C’+CC’)(A+B+C’D) = A’(A + B + C’D) = A’B + A’C’D = A’(B + C’D) e) BD(AC+A’+AC’)=BD(A’+A(C+C’))=BD(A’+A1)=BD(A’+A)=BD1 = BD
2.8) F' = (wx + yz)' = (wx)'(yz)' = (w' + x')(y' + z') = w’y’ + w’z’ + x’y’ + x’z’
FF' = (wx + yz) (w’y’+w’z’+x’y’+x’z’) = wxw’y’ + yzw’y’ + wxw’z’ + yzw’z’ + wxx’y’+ yzx’y’+ wxx’z’+ yzx’z’ Since xx’= 0, FF’ = 0+0+0+0+0+0+0+0 = 0
F + F' = (wx + yz) + (wx + yz)'. Take s = wx + yz,then F + F' = s+s’. Since s+s’=1, F + F' = 1.
2.9)
2.15) 2.19) 2.20)
2.21) 2.22) 2.24)
a) (xy’+x’y)’= (xy’)’(x’y)’=(x’ + y)(x + y’)=xx’+x’y’+xy+yy’=x’y’+xy b) ((A’B+CD)E’+E)’=((A’B+CD)E’)’ E’=((A’B+CD)’+E)E’ = ((A’B+CD)’ E’+EE’=
((A’B)’(CD)’)’E’ = (A+B’)(C’+ D’)E’ = AC’E’+AD’E’+B’C’E’+B’D’E’ c) ((x' + y + z')(x + y')(x + z))' = (x' + y + z')'+(x + y')'+(x + z)'=xy'z+x'y+x'z'
T1 = A’B’C’ + A’B’C + A’BC’ = A’(B’C’+B’C+BC’)=A’(B’(C’+C)+BC’)=A’(B’+BC’)=A’(B’ + C’) T2 = A’BC + AB’C’ + AB’C + ABC’ + ABC = A’BC + A(B’C’ + B’C +BC’ + BC) = A’BC + A(B’ + B) = A’BC + A = A + BC
F(A,B,C,D) = Σ(1,3,5,7,9,11,13,15) = Π(0,2,4,6,8,10,12,14)
a) F(A, B, C, D) = Σ(3, 5, 9, 11, 15) F'(A, B, C, D) = Π (0,1,2,4,6,7,8,10,12,13,14)
b) F(x, y, z) = Π (0,1,2,4,7,9,12) F' = Σ (0,1,2,4,7,9,12)
a) F(x, y, z)=Σ(2,5,6)=Π((0,1,3,4,7) b) F(A,B,C,D) = Π (0,1,2,4,7,9,12) = Σ(3,5,6,8,10,11,13,14,15)
a) SOP: AB + BC b) SOP: x’ + y + z’
POS: B(A + C) POS: (x’ + y + z’)
XOR: (ab)=(a’+b)(a+b’)
COMPLEMENT: ((a’+b)(a+b’))’=(a’+b)’+(a+b’)’=ab’+a’b
DUAL of XOR: (a’b)+(ab’)= (a+b’)’+(a’+b)’=((a+b’)(a’+b))’ (same as XOR complement)
2.2) a) x b) (x + y)(x + y’) = x + xy + xy’ + yy’ = x c) xyz + x’y + xyz’ = xy + x’y = y d) (A + B’)’ (A’ + B’)’ = A’B’AB = 0 e) xy(z + z') + x'y(z + z')=xy1 + x'y1= xy + x'y = y(x+x’) = y f) xx' + xy' + xz + x'y + yy' + yz + x'z' + y'z' + zz'= 0 + xy' + xz + x'y + 0 + yz + x'z' + y'z' +0 =
(xy'+ x'y)+ (xz+ x'z') + (yz+y'z')= (xy)+(xz)’+(yz)’
2.3) a) ABC + A’B + ABC’ = AB + A’B = B b) x’yz + xz = (x + x’y)z = (x + y)z c) (x + y)’ (x’ + y’) = x’y’(x’ + y’) = y’(x’ + x’y’) = x’y’ + x’y’ = x’y’ d) xy + x(wz + wz’) = xy + xw = x(y + w) e) (BC’+A’D) (AB’+CD’) = (BC’AB’+BC’CD’+A’DAB’+A’DCD’) = (0 + 0 + 0 + 0) = 0 f) xx' + xz' + x'y' + y'z' + x'z' + z'z' = y'(x' + z')+ z' = x'y' +y’z’+z’ = x’y’+z’
2.4) a) A’C’ + ABC + AC’ = C’ + ABC = AB + C’ b) (x’y’+z)’+z+xy+wz = (x+y)z’+z+xy+wz = x+y+z+xy+wz = x + y + z c) A’B(D’ + C’D) + B(A + A’CD) = B(A’D’ + A’C’D + A + A’CD) = B(A’D’ + A + A’D) = B(A’ + A) = B d) (A’+C)(A’+C’)(A+B+C’D) = (A’+A’C+A’C’+CC’)(A+B+C’D) = A’(A + B + C’D) = A’B + A’C’D = A’(B + C’D) e) BD(AC+A’+AC’)=BD(A’+A(C+C’))=BD(A’+A1)=BD(A’+A)=BD1 = BD
2.8) F' = (wx + yz)' = (wx)'(yz)' = (w' + x')(y' + z') = w’y’ + w’z’ + x’y’ + x’z’
FF' = (wx + yz) (w’y’+w’z’+x’y’+x’z’) = wxw’y’ + yzw’y’ + wxw’z’ + yzw’z’ + wxx’y’+ yzx’y’+ wxx’z’+ yzx’z’ Since xx’= 0, FF’ = 0+0+0+0+0+0+0+0 = 0
F + F' = (wx + yz) + (wx + yz)'. Take s = wx + yz,then F + F' = s+s’. Since s+s’=1, F + F' = 1.
2.9)
2.15) 2.19) 2.20)
2.21) 2.22) 2.24)
a) (xy’+x’y)’= (xy’)’(x’y)’=(x’ + y)(x + y’)=xx’+x’y’+xy+yy’=x’y’+xy b) ((A’B+CD)E’+E)’=((A’B+CD)E’)’ E’=((A’B+CD)’+E)E’ = ((A’B+CD)’ E’+EE’=
((A’B)’(CD)’)’E’ = (A+B’)(C’+ D’)E’ = AC’E’+AD’E’+B’C’E’+B’D’E’ c) ((x' + y + z')(x + y')(x + z))' = (x' + y + z')'+(x + y')'+(x + z)'=xy'z+x'y+x'z'
T1 = A’B’C’ + A’B’C + A’BC’ = A’(B’C’+B’C+BC’)=A’(B’(C’+C)+BC’)=A’(B’+BC’)=A’(B’ + C’) T2 = A’BC + AB’C’ + AB’C + ABC’ + ABC = A’BC + A(B’C’ + B’C +BC’ + BC) = A’BC + A(B’ + B) = A’BC + A = A + BC
F(A,B,C,D) = Σ(1,3,5,7,9,11,13,15) = Π(0,2,4,6,8,10,12,14)
a) F(A, B, C, D) = Σ(3, 5, 9, 11, 15) F'(A, B, C, D) = Π (0,1,2,4,6,7,8,10,12,13,14)
b) F(x, y, z) = Π (0,1,2,4,7,9,12) F' = Σ (0,1,2,4,7,9,12)
a) F(x, y, z)=Σ(2,5,6)=Π((0,1,3,4,7) b) F(A,B,C,D) = Π (0,1,2,4,7,9,12) = Σ(3,5,6,8,10,11,13,14,15)
a) SOP: AB + BC b) SOP: x’ + y + z’
POS: B(A + C) POS: (x’ + y + z’)
XOR: (ab)=(a’+b)(a+b’)
COMPLEMENT: ((a’+b)(a+b’))’=(a’+b)’+(a+b’)’=ab’+a’b
DUAL of XOR: (a’b)+(ab’)= (a+b’)’+(a’+b)’=((a+b’)(a’+b))’ (same as XOR complement)
Categories
You my also like
Minimal SOP (Sums of Products)
75.3 KB28.4K13.9KThe ABC Chart from My ABC Program!
5.5 MB50.8K11.2KProblems in Geometry
224.5 KB23.8K9KLe théorème de Pythagore
156.6 KB15.9K2.2KBashing Geometry with Complex Numbers Problem Set
81.8 KB3.4K1.5KDigital Electronics Circuits
326.3 KB29.4K7.9KEngineering Design, Fabrication, and Erection of Prefabricated
19.6 MB21.7K2.4KApplication of Multidisciplinary Approach Based on Innovative
1.5 MB31.2K15KMacau Design Award 2019 winner list
237.7 KB47K16.4K