Holographic Acoustic Elements For Manipulation Of


Download Holographic Acoustic Elements For Manipulation Of


Preview text

HOLOGRAPHIC ACOUSTIC ELEMENTS FOR MANIPULATION OF LEVITATED PARTICLES:
APPLICATIONS TO HUMAN-COMPUTER INTERACTION.
Asier Marzo Perez Supervisor: Oscar Ardaiz Villanueva Department of Mathematics and Computer Engineering.
Public University of Navarre This dissertation is submitted for the degree of Doctor of Philosophy
January 2016

2

3
Table of Contents
This Thesis is a Compendium of Research Papers................................................................. 4 Summary / Resumen............................................................................................................... 5 Acknowledgements ................................................................................................................ 8 Introduction: our new hands ................................................................................................... 9
Levitation for Human-Computer Interaction.................................................................... 11 Acoustic Levitation .......................................................................................................... 11 Principles of Acoustic Levitation ..................................................................................... 12 References ........................................................................................................................ 13 Compiled Research Papers ................................................................................................... 15 Ghost Touch: Turning Surfaces into Interactive Tangible Canvases with Focused Ultrasound. ....................................................................................................................... 15 LeviPath: Modular Acoustic Levitation for 3D Path Visualisations ................................ 16 Holographic Acoustic Elements for Manipulation of Levitated Objects ......................... 17 GauntLev: A Wearable to Manipulate Free-floating Objects .......................................... 18 Frequently Asked Questions about the Research ................................................................. 19 Conclusion / Conclusiones ................................................................................................... 24 Future Work.......................................................................................................................... 28

4
This Thesis is a Compendium of Research Papers
This dissertation is presented as compendium of research papers. That is, the contribution is justified by gathering and placing together various research papers with a coherent theme that have been accepted in indexed journals or high-impact conferences. These works have been done during the PhD and the doctorate has played a significant role on them. In Section 2, there is a summary of each paper, the methodology and access to the papers.
The request of presenting this thesis by compendium has been approved by the thesis director [authDirector.pdf] and the doctoral school [authComittee.pdf] following the rules of the university for presenting a thesis in this modality [rulesCompendium.pdf].
The following articles are included in this thesis:
 Holographic Acoustic Elements for Manipulation of Levitated Objects. Nature Communications. 2015. Impact Factor 10.5, Applied Physics. Asier Marzo, Sue Ann Seah, Bruce W. Drinkwater, Deepak Ranjan Sahoo, Benjamin Long, Sriram Subramanian. A.M. and B.W.D. designed, developed and implemented the algorithms and simulations; A.M. and S.A.S. measured the acoustic slices; A.M and D.R.S. measured the spring constants; A.M. conducted the rest of the experiments and wrote the paper; all the authors contributed to the discussion and edited the manuscript.
 GauntLev: A Wearable to Manipulate Free-floating Objects. ACM CHI. 2016 (to appear). Core A*, Human-Computer Interaction. Asier Marzo. [acceptance_GauntLev.pdf]
 LeviPath: Modular Acoustic Levitation for 3D Path Visualisations. ACM CHI. 2015. Core A*, Human-Computer Interaction. Themis Omirou, Asier Marzo, Sue Ann Seah, Sriram Subramanian. A.M. developed the technical implementation based on the S.A. Moreover, A.M. wrote around half of the paper and made major editions to the rest of it.
 Ghost Touch: Turning Surfaces into Interactive Tangible Canvases with Focused Ultrasound. ACM ITS 2015, Core A. Asier Marzo, Richard McGeehan, Jess McIntosh, Sue Ann Seah, Sriram Subramanian. A.M. developed the technical part and wrote the paper.

5
Summary / Resumen
Summary (English)
Acoustic waves can levitate particles of a wide range of materials and sizes through air, water or biological tissues. This is of paramount importance for crystallography, cell manipulation, lab-on-a-chip scenarios, pharmacology, containerless transportation and even levitation of living things. To date, the levitated particles had to be enclosed by acoustic elements as single-sided levitators only exerted lateral trapping forces or pulling forces. Furthermore, translation and rotation of the trap was limited. Here, for the first time we show full acoustic trapping, translation and rotation of levitated particles using a single-sided phased array. Our approach creates optimum traps at the target positions for any spatial arrangement and significantly enhances previous manipulators. We report three optimum acoustic traps: Twin traps, a novel acoustic phenomenon with the ability to rotate objects; Vortex traps, previously only shown theoretically; and Bottle traps, never proven to levitate objects before. We also introduce the concept of Holographic Acoustic Elements (HAEs) based on interpreting the phase modulations of the transducers as a holographic plate that combines the encoding of identifiable acoustic elements. HAEs allow us to analyse and efficiently generate acoustic traps as well as to compare them with optical traps.
This work brings the advantages of optical levitation (single-beam, rotation, holographic control and multiple particles) to the efficiency and versatility of acoustic levitation. As a result, we expect the development of powerful tractor beams, 3D physical displays or acoustically-controlled internal nanomachines that do not interfere with MRI visualization.
New applications for Human-Computer Interaction (HCI) can be derived from the possibility of remotely moving objects in mid-air to specific locations and even through obstacles. In the most basic configuration, we move particles over a surface to paint on sand or liquids a distance and without contact. A more advance system positions a couple of objects in 3D allowing us to represent functions and positions of objects such as planes or asteroids. The ultimate goal for a display is to levitate hundreds of particles independently to form different shapes.

6
Resumen (Español)
Las ondas acústicas ejercen fuerzas de radiación que forman trampas acústicas en los puntos donde estas fuerzas convergen. Estas trampas acústicas permiten la levitación de partículas de una amplia gama de materiales y tamaños a través de aire, agua o tejidos biológicos. Esto es de suma importancia para cristalografía, manipulación celular, sistemas lab-on-a-chip, biomateriales, transporte sin contacto e incluso la levitación de seres vivos.
Con los levitadores acústicos anteriores, las partículas atrapadas tenían que ser rodeadas por elementos acústicos. Los levitadores de una sola cara (o de un solo haz), sólo ejercían fuerzas laterales, empuje o requerían del uso de una lente acústica. Además, la translación y rotación de las partículas eran limitadas.
Los levitadores de un solo eje son la forma más común de generar trampas acústicas. Se componen de un transductor acústico y un reflector u otro transductor encima. Esto genera una onda estacionaria entre los dos elementos y sus nodos actúan como trampas. Al cambiar la diferencia de fase entre los transductores, las trampas se mueven en una sola dimensión sin necesidad de accionamiento mecánico. Varias configuraciones para la manipulación en dos dimensiones se han explorado, por ejemplo, una matriz plana de transductores y un reflector paralelo proporcionan movimiento dentro del plano de la matriz. Alternativamente, una formación circular de transductores orientada hacia el interior puede trasladar y rotar una partícula dentro del círculo. La translación en 3D es posible con cuatro matrices colocadas formando un cuadrado. Recientemente, elementos piezoeléctricos fabricados a medida se han utilizado para crear trampas con dispositivos de una sola cara (pinzas acústicas). Sin embargo, estas trampas ejercen solamente fuerzas laterales y por lo tanto las partículas tienen que estar apoyadas sobre una superficie. Fuerzas de tracción que actúan en contra de la dirección de propagación (rayos tractores) se han observado en agua usando partículas de forma triangular y en aire usando botellas acústicas. Trampas en tres dimensiones con dispositivos de una sola cara se han demostrado teóricamente y recientemente una trampa 3D estática bajo el agua ha sido reportada. No obstante, se requería una lente acústica física, lo que introduce una considerable pérdida de energía y limita la posición de la trampa al foco.

7
Atrapamiento controlado en 3D, traslación y rotación con un dispositivo de una sola cara permitiría a las pinzas acústicas convertirse en los homólogos de mayor escala de las pinzas ópticas, abriendo aplicaciones en el procesamiento de materiales, fabricación de micro-escala y biomedicina.
En mi trabajo, demostramos simultáneamente atrapamiento 3D, traslación y rotación de las partículas utilizando dispositivos de una sola cara. Esto se logra mediante el ajuste de manera óptima los retardos de fase usados para alimentar los transductores; de esta manera se generan estructuras acústicas sin precedentes y sin recurrir a lentes físicas, transductores hechos a medida o accionamiento mecánico. Nuestro método genera trampas óptimas en las posiciones deseadas con cualquier disposición espacial de los transductores; además, mejora significativamente los manipuladores anteriores. Presentamos tres trampas acústicas óptimas: trampas pinza, un nuevo fenómeno acústico que también puede rotar objetos; trampas tornado, cuyas capacidades de levitación se mostraron teóricamente y recientemente se observaron experimentalmente usando una lente acústica fija; y trampas en botella, que nunca han sido ni probadas ni sugeridas para levitar objetos. También introducimos el concepto de elementos holográficos acústicos basado en la interpretación de los retardos de fase como una placa holográfica que combina la codificación de elementos acústicos. Esta teoría permite el análisis y la generación eficiente de trampas acústicas, así como comparaciones con trampas ópticas. Este trabajo lleva las ventajas de la levitación óptica (es decir, un solo haz, rotación, control holográfico y múltiples partículas) a la eficiencia y versatilidad de la levitación acústica. Como resultado, esperamos el desarrollo de potentes rayos tractores, pantallas físicas 3D o control de micro-máquinas que están dentro de nuestro cuerpo.
Nuevas aplicaciones en interacción hombre-máquina (IHM) se pueden derivar de la posibilidad de posicionar en medio del aire objetos a distancia e incluso a través de obstáculos. En la configuración más básica, movemos partículas sobre una superficie para pintar sobre la arena o líquidos a distancia y sin contacto. Un sistema más avanzado puede posicionar un par de objetos en 3D, esto nos permite representar funciones y posiciones de objetos tales como aviones o asteroides. El objetivo final sería crear un display compuesto de cientos de partículas que levitan de forma independiente para formar diferentes formas.

8
Acknowledgements
It may seem obvious but the first people to whom I should be thankful are my family. I am here because my parents had me; and I got a degree because they had money to pay for it. Furthermore, they have always allowed me to pursue whatever goal I wanted, being it as stupid as creating a band or following a research career. Similarly, since I was very little, I remember my brothers playing with computers. Therefore, programming is something natural for me.
The second most important people are my friends, since school we have spent lot of time together. We all had different hobbies, degrees or ways of facing problems. I really appreciate this variety and have the naive idea that it would be fantastic working with them in a company.
Tax payers give to research a significant amount of what they earn with tremendous effort, even when sometimes it seems like wasted money in our hands, the researchers. I will always have them present in future research. My papers may not have been useful but I will work to create useful technology for humankind and to answer questions with deep implications or that greatly satisfy our curiosity.
To my teachers, they put lot of effort into teaching me the most important concepts required for being a successful computer engineer or a scientist. But more than technical knowledge, their curious and humble attitude is what really inspire their pupils. Similarly, I should be thankful to my colleagues, most of the ideas that I have or I will have are just a conglomeration of things that I have heard from them or that we have discussed while drinking tea and playing videogames.
To rejections: all the research papers presented in this thesis are accepted ones; however, rejections have been more common, especially in the early days. I have learnt most of the things trough rejections and now I do not mind them. After this thesis, I truly enjoy learning and do not get stressed by all the things that I do not know or I get wrong.

9
Introduction: our new hands
Curiosity is one of the most beautiful and interesting features of humankind. It is the inherent desire to discover and understand all the things that surround us: from the tide of the oceans to the fundamental particles that compose matter. This desire to understand and explore could be an evolutionary trait or an indirect necessity of answering the ultimate questions of who are we, where do we come from and where are we going. In any case, curiosity has been a strong determinant in our success.
Curiosity requires the ability to see and manipulate the entities around us. We need to see for acquiring information about the environment, the main method for this is our senses and among them, our eyes are the most developed one. On the other hand, we need to manipulate the entities that we are observing, either for building new ones or just to understand their inner mechanisms. In this regards, our hands are capable of incredible feats of millimetric accuracy guided by motor-eye coordination, proprioception and touch.
Nonetheless, our hands present several limitations, for instance they require contact with the manipulated objects and partially occlude them, they are vulnerable to heat or certain substances and picking or releasing small objects is difficult. To overcome these constraints, we create and employ tools. Holding a hammer, wearing gloves or tweezing out a splinter are examples of how tools have hastened our success as a species.
Similarly, our eyes can only capture a minuscule fraction of the electromagnetic spectrum and in a scale that seems far away from atoms or stars. Luckily, we have developed microscopes and telescopes that expanded our range and scale. We have even surpassed the inherent limit of light to image things smaller than its wavelength with technologies such as electron microscopy, x-ray crystallography or super resolution microscopy. We can even observe the trail of fundamental particles in bubble-chambers.
We have also created new manipulation tools or in other words, new hands. Microscopic tweezers or cranes are a couple of examples but we have much more advanced “hands”. Even since the 60s it was known that a focalized laser could trap small particles (aka optical tweezers), with this technology we can stretch DNA strains or hold atoms to cool them down to the lowest temperatures. We have also used electricity to manipulate particles

10
(electrophoretics) being the manipulated entities things as varied as proteins in a petri dish or plasma inside a Tokamak. CRISPR or TALEN are just some of the techniques that imply that we can edit gene sequences with unprecedented control. Nowadays, 3D printers are mainstream and counterparts for the nanoworld are becoming more and more used (e.g. 2 photon lithography).
However, our ability to see has always predated our capacity to manipulate; new technologies for manipulation are highly coveted. In this thesis, we advance beyond the state of the art in acoustophoretics; namely, the manipulation of particles using the acoustic radiation force. Being sound a mechanical wave, acoustic manipulation has the best efficiency in input power to output force. Sound can travel through air, water, tissue or solids and its range of frequency permits to manipulate things from the microscopic scale (like cells or microorganisms) to the macroscale (steel bearings or blobs of liquid). We apply the new results to Human-Computer Interaction (HCI) but Holographic Acoustic Levitation will also find impactful applications on other fields.

Preparing to load PDF file. please wait...

0 of 0
100%
Holographic Acoustic Elements For Manipulation Of