Energy minimization for lattices and periodic configurations
Download Energy minimization for lattices and periodic configurations
Preview text
Energy minimization for lattices and periodic configurations, and formal duality
Abhinav Kumar
MIT
November 14, 2011
joint work with Henry Cohn and Achill Schu¨rmann
Abhinav Kumar (MIT)
Potential
November 14, 2011 1 / 20
Sphere packings
Sphere packing problem: What is (a/the) densest sphere packing in n dimensions?
In low dimensions, the best densities known are achieved by lattice packings.
n Λ due to
123 A1 A2 A3
Gauss
45
D4 D5 KorkineZolotareff
678 E6 E7 E8
Blichfeldt
24 Leech Cohn-K.
Abhinav Kumar (MIT)
Potential
November 14, 2011 2 / 20
Sphere packings
Sphere packing problem: What is (a/the) densest sphere packing in n dimensions?
In low dimensions, the best densities known are achieved by lattice packings.
n Λ due to
123 A1 A2 A3
Gauss
45
D4 D5 KorkineZolotareff
678 E6 E7 E8
Blichfeldt
24 Leech Cohn-K.
Abhinav Kumar (MIT)
Potential
November 14, 2011 2 / 20
Low dimensions
n = 1: lay intervals end to end (density 1). n = 2: hexagonal or A2 arrangement [Fejes-T´oth 1940]
✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✍☞ ✎✌ ✍☞ ✎✌ ✍✎ ☞✌ ✍☞ ✎✌☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✍☞ ✎✌ ✍☞ ✎✌ ✍✎ ☞✌ ✍☞ ✎✌☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
This is the unique densest periodic packing.
Abhinav Kumar (MIT)
Potential
November 14, 2011 3 / 20
Low dimensions
n = 1: lay intervals end to end (density 1). n = 2: hexagonal or A2 arrangement [Fejes-T´oth 1940]
✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✍☞ ✎✌ ✍☞ ✎✌ ✍✎ ☞✌ ✍☞ ✎✌☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✍☞ ✎✌ ✍☞ ✎✌ ✍✎ ☞✌ ✍☞ ✎✌☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
This is the unique densest periodic packing.
Abhinav Kumar (MIT)
Potential
November 14, 2011 3 / 20
Barlow packings
n = 3 : stack layers of the solution in 2 dimensions. [Hales 1998] ✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✎ ✍☞ ✎ ♠☞ ✌ ✎ ✍☞ ✎ ♠✌ ✎ ✍ ☞✎ ☞ ♠☞ ✎ ✌ ✍☞ ✎ ♠☞ ✌☞ ✍✍ ✎✌ ✎ ✍✌ ☞ ✍ ✎ ♠☞ ✌ ✎ ✍✌ ✍ ✎ ☞ ♠✎ ☞ ✍ ✌✌ ✍ ☞ ✎ ♠☞ ✎ ✌ ✍✌ ☞ ♠☞ ✌ ✎✍☞ ✍ ✎✌ ✍✌ ☞ ✍ ✎✌ ✍✍ ✌ ✎ ☞✌ ✍✌ ✍ ☞ ✎✌✌ ☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
Uncountably many ways of doing this, the Barlow packings. Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.
Abhinav Kumar (MIT)
Potential
November 14, 2011 4 / 20
Barlow packings
n = 3 : stack layers of the solution in 2 dimensions. [Hales 1998] ✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✎ ✍☞ ✎ ♠☞ ✌ ✎ ✍☞ ✎ ♠✌ ✎ ✍ ☞✎ ☞ ♠☞ ✎ ✌ ✍☞ ✎ ♠☞ ✌☞ ✍✍ ✎✌ ✎ ✍✌ ☞ ✍ ✎ ♠☞ ✌ ✎ ✍✌ ✍ ✎ ☞ ♠✎ ☞ ✍ ✌✌ ✍ ☞ ✎ ♠☞ ✎ ✌ ✍✌ ☞ ♠☞ ✌ ✎✍☞ ✍ ✎✌ ✍✌ ☞ ✍ ✎✌ ✍✍ ✌ ✎ ☞✌ ✍✌ ✍ ☞ ✎✌✌ ☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
Uncountably many ways of doing this, the Barlow packings. Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.
Abhinav Kumar (MIT)
Potential
November 14, 2011 4 / 20
Barlow packings
n = 3 : stack layers of the solution in 2 dimensions. [Hales 1998] ✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✎ ✍☞ ✎ ♠☞ ✌ ✎ ✍☞ ✎ ♠✌ ✎ ✍ ☞✎ ☞ ♠☞ ✎ ✌ ✍☞ ✎ ♠☞ ✌☞ ✍✍ ✎✌ ✎ ✍✌ ☞ ✍ ✎ ♠☞ ✌ ✎ ✍✌ ✍ ✎ ☞ ♠✎ ☞ ✍ ✌✌ ✍ ☞ ✎ ♠☞ ✎ ✌ ✍✌ ☞ ♠☞ ✌ ✎✍☞ ✍ ✎✌ ✍✌ ☞ ✍ ✎✌ ✍✍ ✌ ✎ ☞✌ ✍✌ ✍ ☞ ✎✌✌ ☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
Uncountably many ways of doing this, the Barlow packings. Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.
Abhinav Kumar (MIT)
Potential
November 14, 2011 4 / 20
Root lattices
An (simplex lattice) = {x ∈ Zn+1 | xi = 0}, inside the zero-sum hyperplane {x ∈ Rn+1 | xi = 0} ∼= Rn. Dn (checkerboard lattice) = {x ∈ Zn | xi ≡ 0 (mod 2)} E8 = D8 (D8 + (1/2, . . . , 1/2)). E7 = orthogonal complement of A1 inside E8. E6 = orthogonal complement of A2 inside E8.
Abhinav Kumar (MIT)
Potential
November 14, 2011 5 / 20
High dimensions
In higher dimensions, we believe the densest sphere packings don’t come from lattices. Example In R10 the densest known is the Best packing, 40 translates of a lattice.
But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density. Trivial Minkowski bound implies ∃ packing with density ≥ 1/2n, but no explicit constructions known.
Abhinav Kumar (MIT)
Potential
November 14, 2011 6 / 20
Abhinav Kumar
MIT
November 14, 2011
joint work with Henry Cohn and Achill Schu¨rmann
Abhinav Kumar (MIT)
Potential
November 14, 2011 1 / 20
Sphere packings
Sphere packing problem: What is (a/the) densest sphere packing in n dimensions?
In low dimensions, the best densities known are achieved by lattice packings.
n Λ due to
123 A1 A2 A3
Gauss
45
D4 D5 KorkineZolotareff
678 E6 E7 E8
Blichfeldt
24 Leech Cohn-K.
Abhinav Kumar (MIT)
Potential
November 14, 2011 2 / 20
Sphere packings
Sphere packing problem: What is (a/the) densest sphere packing in n dimensions?
In low dimensions, the best densities known are achieved by lattice packings.
n Λ due to
123 A1 A2 A3
Gauss
45
D4 D5 KorkineZolotareff
678 E6 E7 E8
Blichfeldt
24 Leech Cohn-K.
Abhinav Kumar (MIT)
Potential
November 14, 2011 2 / 20
Low dimensions
n = 1: lay intervals end to end (density 1). n = 2: hexagonal or A2 arrangement [Fejes-T´oth 1940]
✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✍☞ ✎✌ ✍☞ ✎✌ ✍✎ ☞✌ ✍☞ ✎✌☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✍☞ ✎✌ ✍☞ ✎✌ ✍✎ ☞✌ ✍☞ ✎✌☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
This is the unique densest periodic packing.
Abhinav Kumar (MIT)
Potential
November 14, 2011 3 / 20
Low dimensions
n = 1: lay intervals end to end (density 1). n = 2: hexagonal or A2 arrangement [Fejes-T´oth 1940]
✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✍☞ ✎✌ ✍☞ ✎✌ ✍✎ ☞✌ ✍☞ ✎✌☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✍☞ ✎✌ ✍☞ ✎✌ ✍✎ ☞✌ ✍☞ ✎✌☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
This is the unique densest periodic packing.
Abhinav Kumar (MIT)
Potential
November 14, 2011 3 / 20
Barlow packings
n = 3 : stack layers of the solution in 2 dimensions. [Hales 1998] ✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✎ ✍☞ ✎ ♠☞ ✌ ✎ ✍☞ ✎ ♠✌ ✎ ✍ ☞✎ ☞ ♠☞ ✎ ✌ ✍☞ ✎ ♠☞ ✌☞ ✍✍ ✎✌ ✎ ✍✌ ☞ ✍ ✎ ♠☞ ✌ ✎ ✍✌ ✍ ✎ ☞ ♠✎ ☞ ✍ ✌✌ ✍ ☞ ✎ ♠☞ ✎ ✌ ✍✌ ☞ ♠☞ ✌ ✎✍☞ ✍ ✎✌ ✍✌ ☞ ✍ ✎✌ ✍✍ ✌ ✎ ☞✌ ✍✌ ✍ ☞ ✎✌✌ ☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
Uncountably many ways of doing this, the Barlow packings. Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.
Abhinav Kumar (MIT)
Potential
November 14, 2011 4 / 20
Barlow packings
n = 3 : stack layers of the solution in 2 dimensions. [Hales 1998] ✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✎ ✍☞ ✎ ♠☞ ✌ ✎ ✍☞ ✎ ♠✌ ✎ ✍ ☞✎ ☞ ♠☞ ✎ ✌ ✍☞ ✎ ♠☞ ✌☞ ✍✍ ✎✌ ✎ ✍✌ ☞ ✍ ✎ ♠☞ ✌ ✎ ✍✌ ✍ ✎ ☞ ♠✎ ☞ ✍ ✌✌ ✍ ☞ ✎ ♠☞ ✎ ✌ ✍✌ ☞ ♠☞ ✌ ✎✍☞ ✍ ✎✌ ✍✌ ☞ ✍ ✎✌ ✍✍ ✌ ✎ ☞✌ ✍✌ ✍ ☞ ✎✌✌ ☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
Uncountably many ways of doing this, the Barlow packings. Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.
Abhinav Kumar (MIT)
Potential
November 14, 2011 4 / 20
Barlow packings
n = 3 : stack layers of the solution in 2 dimensions. [Hales 1998] ✎☞ ✎☞ ✎✎ ☞☞ ✎☞ ✍✎✌ ✍☞ ✎✌ ✍✎ ☞✍ ✌☞ ✎✌ ✍☞✌ ✎✎ ✍☞ ✎ ♠☞ ✌ ✎ ✍☞ ✎ ♠✌ ✎ ✍ ☞✎ ☞ ♠☞ ✎ ✌ ✍☞ ✎ ♠☞ ✌☞ ✍✍ ✎✌ ✎ ✍✌ ☞ ✍ ✎ ♠☞ ✌ ✎ ✍✌ ✍ ✎ ☞ ♠✎ ☞ ✍ ✌✌ ✍ ☞ ✎ ♠☞ ✎ ✌ ✍✌ ☞ ♠☞ ✌ ✎✍☞ ✍ ✎✌ ✍✌ ☞ ✍ ✎✌ ✍✍ ✌ ✎ ☞✌ ✍✌ ✍ ☞ ✎✌✌ ☞ ✍✌ ✍✌ ✍✍ ✌✌ ✍✌
Uncountably many ways of doing this, the Barlow packings. Even in dimensions 5, 6, 7, densest lattices have (uncountably many) competitors.
Abhinav Kumar (MIT)
Potential
November 14, 2011 4 / 20
Root lattices
An (simplex lattice) = {x ∈ Zn+1 | xi = 0}, inside the zero-sum hyperplane {x ∈ Rn+1 | xi = 0} ∼= Rn. Dn (checkerboard lattice) = {x ∈ Zn | xi ≡ 0 (mod 2)} E8 = D8 (D8 + (1/2, . . . , 1/2)). E7 = orthogonal complement of A1 inside E8. E6 = orthogonal complement of A2 inside E8.
Abhinav Kumar (MIT)
Potential
November 14, 2011 5 / 20
High dimensions
In higher dimensions, we believe the densest sphere packings don’t come from lattices. Example In R10 the densest known is the Best packing, 40 translates of a lattice.
But do believe the densest packings can be achieved by periodic packings (Zassenhaus conjecture). Can provably come arbitrarily close for packing density. Trivial Minkowski bound implies ∃ packing with density ≥ 1/2n, but no explicit constructions known.
Abhinav Kumar (MIT)
Potential
November 14, 2011 6 / 20
Categories
You my also like
Submodular Functions, Optimization, and Applications to Machine
5 MB2.8K1.3KApplication of Automorphic Forms to Lattice Problems
756.3 KB17.5K1.9KDetermining the stack usage of applications
679.8 KB25.3K11.4KRevisiting Stack Caches for Energy Efficiency
1.1 MB2.5K578HIMACHAL PRADESH STATE ELECTRICITY BOARD LIMITED For any
144.2 KB32.2K16.1KMine Fire, Ventilation, Miners’ Safety Group
186.7 KB44.5K20.5KAdministrative Committees Session
1.7 MB63.8K31.3KDilip Kumar: An Auteur Actor
413.6 KB55.8K6.1KPolice Department District Pathankot Information of Accidents
950.6 KB66K29K