Handbook of Fourier Analysis & Its Applications


Download Handbook of Fourier Analysis & Its Applications


Preview text

Handbook of Fourier Analysis & Its Applications
Robert J. Marks II
2008

15
References
A
[1] J.B. Abbiss, C. De Mol, and H.S. Dhadwal. Regularized iterative and non-iterative procedures for object restoration from experimental data. Opt. Acta, pp. 107–124, 1983.
[2] J.B. Abbiss, B.J. James, J.S. Bayley, and M.A. Fiddy. Super-resolution and neural computing. Proceedings SPIE, International Society Optical Engineering, pp. 100–106, 1988.
[3] Edwin A. Abbott. Flatland: A Romance of Many Dimensions. Dover, 2007. Originally published in 1884.
[4] Ray Abma and Nurul Kabir. 3D interpolation of irregular data with a POCS algorithm. Geophysics. Vol. 71(6), pp. E91–E97, 2006.
[5] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions. Dover, New York, 9th ed., 1964.
[6] L.D. Abreu. A q-sampling theorem related to the q-Hankel transform. Proceedings of the American Mathematical Society, Vol. 133(4), pp. 1197–1203, 2005.
[7] Amir D. Aczel. The Mystery of the Aleph: Mathematics, the Kabbalah, and the Human Mind. Four Walls Eight Windows, 2000.
[8] H.C. Agarwal. Heat transfer in laminar flow between parallel plates at small Peclet numbers. Applied Sci. Res., Vol. 9, pp. 177–189, 1960.
[9] R. Agarwal, M. Bohner, and A. Peterson. Inequalities on time scales: A survey. Mathematical Inequalities and Applications, Vol. 4(4), pp. 535–557, 2001.
[10] R. Agarwal, M. Bohner, D. O’Regan et al. Dynamic equations on time scales: a survey. Journal of Computational and Applied Mathematics, Vol. 141(1–2), pp. 1–26, 2002.
[11] T.H. Ahberg, E.N. Nilson, and T.L. Walsh. The Theory of Splines and Their Applications. Academic Press, New York, 1964.
[12] C.B. Ahn, J.H. Kim, and Z.H. Cho. High-speed spiral echo planar NMR imaging – I. IEEE Transactions Medical Imaging, Vol. MI-5, pp. 2–7, 1986.
[13] S.T. Alexander. Fast Adaptive Filters: A Geometrical Approach. IEEE ASSP Magazine, pp. 18–28, 1986.
[14] Z. Alkachouh and M. G. Bellanger. Fast DCT-based spatial domain interpolation of blocks in images. IEEE Transactions Image Processing., Vol. 9, No. 4. pp. 729–732, 2000.
[15] J.P. Allebach. Analysis of sampling pattern dependence in time-sequential sampling of spatiotemporal signals. Journal of the Optical Society America, Vol. 71, pp. 99–105, 1981.
[16] L.B. Almedia. An introduction to the angular Fourier transform. Proceedings IEEE International Conf. Acoust., Speech, Signal Process., Minneapolis, MN, 1993.
[17] L.B. Almeida. The fractional Fourier transform and time-frequency representations. IEEE Transactions on Signal Processing. Vol. 42(11), pp. 3084–3091, 1994.
[18] L.B. Almeida, Product and Convolution Theorems for the Fractional Fourier Transform. IEEE Signal Processing Letters, Vol. 4(1), pp. 15–17, 1997.

REFERENCES

681

[19] Oktay Altun. Gaurav Sharma, Mehmet U. Celik, and Mark F. Bocko. A set theoretic framework for watermarking and its application to semifragile tamper detection. IEEE Transactions on Information Forensics and Security. Vol. 1(4), pp. 479–492, 2006.
[20] M. Ancis and D.D. Giusto. Reconstruction of missing blocks in JPEG picture transmission. IEEE Pacific Rim Conference, pp. 288–291, 1999.
[21] B. Andò, S. Baglio, S. Graziani and N. Pitrone. Threshold Error Reduction in Linear Measurement Devices by Adding Noise Signal. Proceedings of the IEEE Instrumentation and Measurements Technology Conference, St. Paul, Minnesota, pp. 18–21, 42–46, 1998.
[22] H.C. Andrews and C.L. Patterson. Singular value decompositions and digital image processing. IEEE Transactions Acoust., Speech, Signal Processing, pp. 26–53, 1976.
[23] K. Araki. Sampling and recovery formula in finite Hankel transform based on the minimum norm principle. Transactions Institute Electron. Commun. Engineering Jpn., Vol. J68A, pp. 643–649, 1985.
[24] F. Arago. Joseph Fourier, Biographies of Distinguished Scientific Men. London, pp. 242–286, 1957.
[25] H. Arsenault. Diffraction theory of Fresnel zone plates. Journal of the Optical Society America, Vol. 58, p. 1536, 1968.
[26] H. Arsenault and A. Boivin. An axial form of the sampling theorem and its application to optical diffraction. Journal Applied Phys., Vol. 38, pp. 3988–3990, 1967.
[27] H. Arsenault and K. Chalasinska-Macukow. The solution to the phase retrieval problem using the sampling theorem. Optical Communication, Vol. 47, pp. 380–386, 1983.
[28] H. Arsenault and B. Genestar. Deconvolution of experimental data. Can. J. Phys., Vol. 49, pp. 1865–1868, 1971.
[29] H. Artes, F. Hlawatsch and G. Matz. Efficient POCS algorithms for deterministic blind equalization of time-varying channels. IEEE Global Telecommunications Conference, 2000. GLOBECOM ’00. Vol. 2,27, pp. 1031–1035, 2000.
[30] S. Chaturvedi, N. Arvind, Mukunda, et al. The sampling theorem and coherent state systems in quantum mechanics. Physica Scripta, Vol. 74(2), pp. 168–179, 2006.
[31] R.B. Ash. Information Theory. Interscience, New York, 1965. [32] J.L. Aravena. Recursive moving window DFT algorithm. IEEE Transactions Computers, Vol. 39,
pp. 145–151, 1990. [33] Nakhle H.Asmar. Partial Differential Equations and Boundary Value Problems with Fourier
Series (2nd Edition). Prentice Hall, 2004. [34] C. Atzeni and L. Masotti. A new sampling procedure for the synthesis of linear transversal filters.
IEEE Transactions Aerospace & Electronic Systems, Vol. AES-7, pp. 662–670, 1971. [35] T. Auba and Y. Funahashi. The structure of all-pass matrices that satisfy directional interpolation
requirements. IEEE Transactions Automatic Control, Vol. 36, pp. 1485–1489, 1991. [36] T. Auba and Y. Funahashi. The structure of all-pass matrices that satisfy two-sided interpolation
requirements. IEEE Transactions Automatic Control, Vol. 36, pp. 1489–1493, 1991. [37] D.A. August and W.B. Levy. A simple spike train decoder inspired by the sampling theorem.
Neural Computation, Vol. 8(1), pp. 67–84, 1996. [38] Saint Augustine. DeGenesi ad Letteram, Book II. [39] L. Auslander and R. Tolimieri. Characterizing the radar ambiguity functions. IEEE Transactions
Information Theory, Vol. IT-30, pp. 832–836, 1984.
B
[40] A. Bachl and W. Lukosz. Experiment on super-resolution imaging of a reduced object field. Journal of the Optical Society America, Vol. 57, pp. 163–169, 1967.
[41] Sonali Bagchi and Sanjit K. Mitra. The Nonuniform Discrete Fourier Transform and its Applications in Signal Processing. Springer, 1998.
[42] A.V. Balakrishnan. A note on the sampling principle for continuous signals. IRE Transactions Information Theory, Vol. IT-3, pp. 143–146, 1957.
[43] A.V. Balakrishnan. On the problem of time jitter in sampling. IRE Transactions Information Theory, Vol. IT-8, pp. 226–236, 1962.

682

REFERENCES

[44] A.V. Balakrishnan. Essentially bandlimited stochastic processes. IEEE Transactions Information Theory, Vol. IT-11, pp. 145–156, 1965.
[45] C. Bardaro, P.L. Butzer, R.L. Stens RL, et al. Approximation error of the Whittaker cardinal series in terms of an averaged modulus of smoothness covering discontinuous signals. Journal of Mathematical Analysis and Applications, Vol. 316(1), pp. 269–306, 1 2006.
[46] I. Bar-David. An implicit sampling theorem for bounded bandlimited functions. Information & Control, Vol. 24, pp. 36–44, 1974.
[47] I. Bar-David. Sample functions of a Gaussian process cannot be recovered from their zero crossings. IEEE Transactions Information Theory, Vol. IT-21, pp. 86–87, 1975.
[48] I. Bar-David. On the degradation of bandlimiting systems by sampling. IEEE Transactions Communications, Vol. COM-25, pp. 1050–1052, 1977.
[49] R. Barakat. Application of the sampling theorem to optical diffraction theory. Journal of the Optical Society America, Vol. 54, pp. 920–930, 1964.
[50] R. Barakat. Determination of the optical transfer function directly from the edge spread function. Journal of the Optical Society America, Vol. 55, pp. 1217–1221, 1965.
[51] R. Barakat. Nonlinear transformation of stochastic processes associated with Fourier transforms of bandlimited positive functions. International J. Contr., Vol. 14, No. 6, pp. 1159–1167, 1971.
[52] R. Barakat. Note on a sampling expansion posed by O’Neill and Walther. Optical Communication, Vol. 23, pp. 207–208, 1977.
[53] R. Barakat. Shannon numbers of diffraction images. Optical Communication, pp. 391–394, 1982.
[54] R. Barakat and E. Blackman. Application of the Tichonov regularization algorithm to object restoration. Optical Communication, pp. 252–256, 1973.
[55] R. Barakat and A. Houston. Line spread and edge spread functions in the presence of off-axis aberrations. Journal of the Optical Society America, Vol. 55, pp. 1132–1135, 1965.
[56] R. Barakat and J.E. Cole III. Statistical properties of n random sinusoidal waves in additive Gaussian noise. Journal Sound and Vibration, Vol. 63, pp. 365–377, 1979.
[57] V. Bargmann, P. Butera, L. Girardello, and J.R. Klauder. On the completeness of the coherent states, Rep. Math. Phys. 2, pp. 221–228, 1971.
[58] H.A. Barker. Synchronous sampling theorem for nonlinear systems. Electron. Letters, Vol. 5, p. 657, 1969.
[59] C.W. Barnes. Object restoration in a diffraction-limited imaging system. Journal of the Optical Society America, Vol. 56, pp. 575–578, 1966.
[60] H.O. Bartelt, K.H. Brenner, and A.W. Lohmann. The Wigner distribution function and its optical production. Optical Communication Vol. 32, pp. 32–38, 1980.
[61] H.O. Bartelt and J. Jahns. Interferometry based on the Lau effect. Optical Communication, pp. 268–274, 1979.
[62] M.J. Bastiaans. A frequency-domain treatment of partial coherence. Opt. Acta, Vol. 24, pp. 261–274, 1977.
[63] M.J. Bastiaans. A generalized sampling theorem with application to computer-generated transparencies. Journal of the Optical Society America, Vol. 68, pp. 1658–1665, 1978.
[64] M.J. Bastiaans. The Wigner distribution function applied to optical signals and systems. Optical Communication, Vol. 25, pp. 26–30, 1978.
[65] M.J. Bastiaans. The Wigner distribution function and Hamilton’s characteristics of a geometricaloptical system. Optical Communication, Vol. 30, pp. 321–326, 1979.
[66] M.J. Bastiaans. Sampling theorem for the complex spectrogram, and Gabor’s expansion of a signal in Gaussian elementary signals, in 1980 International Optical Computing Conference, ed. W.T. Rhodes, Proceedings SPIE, Vol. 231, pp. 274–280, 1980 (also published in Optical Engineering, Vol. 20, pp. 594–598, 1981).
[67] M.J. Bastiaans. The expansion of an optical signal into a discrete set of Gaussian beams. Optik, Vol. 57, pp. 95–102, 1980.
[68] M.J. Bastiaans. A sampling theorem for the complex spectrogram, and Gabor’s expansion of a signal in Gaussian elementary signals. Optical Engineering, Vol. 20, pp. 594–598, 1981.

REFERENCES

683

[69] M.J. Bastiaans. Gabor’s signal expansion and degrees of freedom of a signal. Opt. Acta, Vol. 29, pp. 1223–1229, 1982.
[70] M.J. Bastiaans. Optical generation of Gabor’s expansion coefficients for rastered signals. Opt. Acta, Vol. 29, pp. 1349–1357, 1982.
[71] M.J. Bastiaans. Signal description by means of a local frequency spectrum. Proceedings SPIE, International Society Optical Engineering, Vol. 373, pp. 49–62, 1981.
[72] M.J. Bastiaans. Gabor’s signal expansion and degrees of freedom of a signal. Opt. Acta, Vol. 29, pp. 1223–1229, 1982.
[73] M.J. Bastiaans. On the sliding-window representation in digital signal processing. IEEE Transactions Acoust., Speech, Signal Processing Vol. ASSP-33, pp. 868–873, 1985.
[74] M.J. Bastiaans. Error reduction in two-dimensional pulse-area modulation, with application to computer-generated transparencies. 14th Congress of the International Commission for Optics, ed. H.H. Arsenault, Proceedings SPIE, Vol. 813, pp. 341–342, 1987.
[75] M.J. Bastiaans. Error reduction in one-dimensional pulse-area modulation, with application to computer-generated transparencies. Journal of the Optical Society America A, Vol. 4, pp. 1879–1886, 1987.
[76] M.J. Bastiaans. Local-frequency descriptions of optical signals and systems. EUT Report 88–E–191 (Faculty of Electrical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands, 1988).
[77] M.J. Bastiaans. Gabor’s signal expansion applied to partially coherent light. Optical Communication, Vol. 86, pp. 14–18, 1991.
[78] M.J. Bastiaans. On the design of computer-generated transparencies based on area modulation of a regular array of pulses. Optik, Vol. 88, pp. 126–132, 1991.
[79] M.J. Bastiaans. Second-order moments of the Wigner distribution function in first-order optical systems. Optik, Vol. 88, pp. 163–168, 1991.
[80] M.J. Bastiaans, M.A. Machado, and L.M. Narducci. The Wigner distribution function and its applications in optics. Optics in Four Dimensions-1980, AIP Conf. Proceedings 65, eds. (American Institute of Physics, New York, 1980), pp. 292–312, 1980.
[81] Sankar Basu and Bernard C. Levy. Multidimensional Filter Banks and Wavelets: Basic Theory and Cosine Modulated Filter Banks. Springer, 1996.
[82] J.S. Bayley and M.A. Fiddy. On the use of the Hopfield model for optical pattern recognition. Optical Communication, pp. 105–110, 1987.
[83] M.G. Beaty and M.M. Dodson. The Whittaker-Kotel’nikov-Shannon theorem, spectral translates and Plancherel’s formula. Journal of Fourier Analysis and Applications, Vol. 10(2), pp. 179–199, 2004.
[84] Reinhard Beer. Remote Sensing by Fourier Transform Spectrometry. John Wiley & Sons, 1992.
[85] A.H. Beiler. Ch. 11 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.
[86] G.A. Bekey and R. Tomovic. Sensitivity of discrete systems to variation of sampling interval. IEEE Transactions Automatic Control, Vol. AC-11, pp. 284–287, 1966.
[87] B.W. Bell and C.L. Koliopoulos. Moiré topography, sampling theory, and charged-coupled devices. Optical Letters, Vol. 9, pp. 171–173, 1984.
[88] D.A. Bell. The Sampling Theorem. International Journal of Electrical Engineering, Vol. 18(2), pp. 175–175, 1981.
[89] E.T. Bell. Men of Mathematics. Touchstone (Reissue edition) 1986. [90] V.K. Belov and S.N. Grishkin. Digital bandpass filters with nonunform sampling.
Priborostroemie, Vol. 23, No. 3 (in Russian), pp. 3–7, 1980. [91] V.I. Belyayev. Processing and theoretical analysis of oceanographic observations. Translation
from Russian JPRS 6080, 1973. [92] John J. Benedetto and Paulo J.S.G. Ferreira. Modern Sampling Theory. by (Hardcover - Feb. 16,
2001) Birkhäuser user Boston, 2001. [93] J.J. Benedetto and Ahmed I. Zayed (Editors). Sampling, Wavelets, and Tomography. Pub.
Date: December 2003 Publisher: Birkhäuser user Verlag.

684

REFERENCES

[94]
[95]
[96] [97]
[98] [99] [100] [101]
[102] [103] [104] [105] [106] [107]
[108] [109] [110] [111] [112] [113] [114] [115] [116] [117] [118]

M. Bendinelli, A. Consortini, L. Ronchi, and R.B. Frieden. Degrees of freedom and eigenfunctions of the noisy image. Journal of the Optical Society America, Vol. 64, pp. 1498–1502, 1974. M. Bennett, et al. Filtering of ultrasound echo signals with the fractional Fourier transform. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vol. 1(17–21), pp. 882–885, 2003. N. Benvenuto and G.L. Pierobin. Extension of the sampling theorem to exponentially decaying causal functions. IEEE Transactions on Signal Processing, Vol. 39(1), pp. 189–190, 1991. N. Benvenuto, L. Franks, F. Hill. Realization of Finite Impulse Response Filters Using Coefficients +1, 0, and −1. IEEE Transactions on Communications, Oct 1985, Vol.33, Issue 10, pp. 1117–1125. E.M. Bernat, W.J. Williams, and W.J. Gehring. Decomposing ERP time-frequency energy using PCA. Clinical Neurophysiology. Vol. 116(6), pp. 1314–1334, 2005. M. Bertero. Linear inverse and ill-posed problems. In P.W. Hawkes, editor, Advances in Electronics and Electron Physics. Academic Press, New York, 1989. M. Bertero, P. Boccacci, and E.R. Pike. Resolution in diffraction-limited imaging, a singular value analysis. II. The case of incoherent illumination. Opt. Acta, pp. 1599–1611, 1982. M. Bertero, C. de Mol, E.R. Pike, and J.G. Walker. Resolution in diffraction-limited imaging, a singular value analysis. IV. The case of uncertain localization or non-uniform illumination of the object. Opt. Acta, pp. 923–946, 1984. M. Bertero, C. De Mol, and E.R. Pike. Analytic inversion formula for confocal scanning microscopy. Journal of the Optical Society America A, pp. 1748–1750, 1987. M. Bertero, C. De Mol, and G.A. Viano. Restoration of optical objects using regularization. Optics Letters, pp. 51–53, 1978. M. Bertero, C. De Mol, and G.A. Viano. On the problems of object restoration and image extrapolation in optics. Journal Math. Phys., pp. 509–521, 1979. M. Bertero and E.R. Pike. Resolution in diffraction-limited imaging, a singular value analysis. I. The case of coherent illumination. Opt. Acta, pp. 727–746, 1982. M. Bertero and E.R. Pike. Exponential sampling method for Laplace and other dilationally invariant transforms: I. Singular system analysis. Inverse Problems, pp. 1–20, 1991. M. Bertero and E.R. Pike. Exponential sampling method for Laplace and other dilationally invariant transforms: II. Examples in photon correlation spectroscopy and Fraunhofer diffraction. Inverse Problems, pp. 21–41, 1991. A.S. Besicovitch. Almost Periodic Functions. Wiley Interscience, New York, 1968. F.J. Beutler. Sampling theorems and bases in a Hilbert space. Information & Control, Vol. 4, pp. 97–117, 1961. F.J. Beutler. Error-free recovery of signals from irregularly spaced samples. SIAM Review, Vol. 8, No. 3, pp. 328–335, 1966. F.J. Beutler. Alias-free randomly timed sampling of stochastic processes. IEEE Transactions on Information Theory, Vol. IT–16, pp. 147–152, 1970. F.J. Beutler. Recovery of randomly sampled signals by simple interpolators. Information & Control, Vol. 26, No. 4, pp. 312–340, 1974. F.J. Beutler. On the truncation error of the cardinal sampling expansion. IEEE Transactions Information Theory, Vol. IT-22, pp. 568–573, 1976. F.J. Beutler and D.A. Leneman. Random sampling of random processes: stationary point processes. Information & Control, Vol. 9, pp. 325–344, 1966. F.J. Beutler and D.A. Leneman. The theory of stationary point processes. Acta Math, Vol. 116, pp. 159–197, September 1966. V. Bhaskaran and K. Konstantinides. Image and Video Compression Standards, Kluwer, 1995. Arun K. Bhattacharyya. Phased Array Antennas: Floquet Analysis, Synthesis, BFNs and Active Array Systems. Wiley-Interscience, 2006. A.M. Bianchi and L.T. Mainardi and S. Cerutti. Time-frequency analysis of biomedical signals. Transactions of the Institute of Measurement and Control, Vol. 22(3), pp. 215–230, 2000.

REFERENCES

685

[119] [120] [121] [122] [123] [124] [125] [126] [127] [128] [129] [130] [131]
[132]
[133] [134]
[135] [136] [137] [138]
[139] [140]
[141] [142]
[143] [144] [145] [146]

H.S. Black. Modulation Theory. Van Nostrand, New York, 1953. R.B. Blackman and J.W. Tukey. The measurement of power spectra from the point of view of communications engineering. Bell Systems Tech. J., Vol. 37, p. 217, 1958. W.E. Blash. Establishing proper system parameters for digitally sampling a continuous scanning spectrometer. Applied Spectroscopy., Vol. 30, pp. 287–289, 1976. V. Blaz˘ek. Sampling theorem and the number of degrees of freedom of an image. Optical Communication, Vol. 11, pp. 144–147, 1974. E.M. Bliss. Watch out for hidden pitfalls in signal sampling. Electron. Engineering, Vol. 45, pp. 59–61, 1973. Peter Bloomfield. Fourier Analysis of Time Series: An Introduction.Wiley-Interscience, 2000. R.P. Boas, Jr. Entire Functions. Academic Press, New York, 1954. R.P. Boas, Jr. Summation formulas and bandlimited signals. Tohoku Math. J., Vol. 24, pp. 121–125, 1972. Salomon Bochner and Komaravolu Chandrasekharan. Fourier Transforms. Princeton University Press, 1949. M. Bohner and A. Peterson. Dynamic Equations on Time Scales: An Introduction with Applications. Birkhauser, Boston, 2001. M. Bohner and A. Peterson, Dynamic Equations on Time Scales, Birkhäuser, Boston, 2001. H. Bohr. Almost Periodic Functions. Wiley Interscience, New York, 1968. A. Boivin and C. Deckers. A new sampling theorem for the complex degree of coherence for reconstruction of a luminous isotropic source. Optical Communication, Vol. 26, pp. 144–147, 1978. P. Bonato, S.H. Roy, M. Knaflitz et al. Time-frequencyparameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions. IEEE Transactions of Biomedical Engineering. Vol. 48(7), pp. 745–753, 2001. F.E. Bond and C.R. Cahn. On sampling the zeros of bandwidth limited signals. IRE Transactions Information Theory, Vol. IT-4, pp. 110–113, 1958. F.E. Bond, C.R. Cahn, and J.C. Hancock. A relation between zero crossings and Fourier coefficients for bandlimited functions. IRE Transactions Information Theory, Vol. IT-6, pp. 51–55, 1960. C. de Boor. A Practical Guide to Splines. Springer-Verlag, New York, 1978. E. Borel. Sur l’interpolation. C.R. Acad. Sci. Paris, Vol. 124, pp. 673–676, 1877. E. Borel. Mémoire sur les séries divergentes. Ann. Ecole Norm. Sup., Vol. 3, pp. 9–131, 1899. E. Borel. La divergence de la formule de Lagrange a été établie également. In Leçons sur les fonctions de variables réelles et les développements en séries de polynômes. Gauthier-Villars, Paris, 1905, pp. 74–79. M. Born and E. Wolf. Principles of Optics. Pergamon Press, Oxford, 1980. T. Bortfeld, J. Burkelbach, R. Boesecks, and W. Schlegal. Methods of image reconstruction from projections applied to conformation radiotherapy. Phys. Med. Biol., Vol. 35, pp. 1423–34, 1990. Robert L. Boylestad, and Louis Nashelsky. Electronic Devices and Circuit Theory (8th Edition), Prentice Hall, 2001. A. Boumenir et al. Eigenvalues of periodic Sturm-Liouville problems by the ShannonWhittaker sampling theorem. Mathematics of Computation, Vol. 68(227), pp. 1057–1066, 1999. F. Bouzeffour. A q-sampling theorem and product formula for continuous q-Jacobi functions. Proceedings of the American Mathematical Society, Vol. 135(7), pp. 2131–2139, 2007. G.E.T. Box and G.M. Jenkins. Time Series Analysis. Forecasting and Control (revised edition). Holden-Day, San Francisco, 1976. G.D. Boyd and J.P. Gordon. Confocal multimode resonator for millimeter through optical wavelength masers. Bell Systems Tech. J., pp. 489–508, 1961. G.D. Boyd and H. Kogelnik. Generalized confocal resonator theory. Bell Systems Tech. J., pp. 1347–1369, 1962.

686

REFERENCES

[147] [148] [149] [150] [151] [152] [153] [154] [155] [156] [157] [158] [159] [160] [161] [162] [163] [164] [165] [166]
[167] [168] [169] [170] [171] [172] [173] [174] [175] [176]

G.R. Boyer. Realization d’un filtrage super-resolvant. Opt. Acta, pp. 807–816, 1983. Ronald Newbold Bracewell. The Fourier Transform and its Applications, McGraw-Hill, 1965. Ronald Newbold Bracewell. The Fourier Transform and its Applications, 2nd edition, Revised. McGraw-Hill, New York, 1986. Ronald Newbold Bracewell. The Hartley Transform. Oxford University Press, New York, 1986. Ronald Newbold Bracewell. Fourier Analysis and Imaging. Plenum Publishing Corporation, 2004. A. Brahme. Optimization of stationary and moving beam radiation therapy techniques. Radiother. Oncol., 12 pp. 129–140, 1988. Luca Brandolini, Leonardo Colzani, Alex Iosevich, and Giancarlo Travaglini. Fourier Analysis and Convexity. Birkhäuser Boston, 2004. David Brandwood. Fourier Transforms in Radar and Signal Processing. Artech House, 2003. H. Bray, K. McCormick, and R.O. Wells et al. Wavelet variations on the Shannon sampling theorem. Biosystems, Vol. 34(1–3), pp. 249–257, 1995. L.M. Bregman. Finding the common point of convex sets by the method of successive projections. Dokl. Akad. Nauk. USSR, Vol. 162, No. 3, pp. 487–490, 1965. P. Bremer and J.C. Hart. A sampling theorem for MLS surfaces. Proceedings Eurographics/ IEEE VGTC Symposium on Point-Based Graphics, pp. 47–54. Hans Bremermann. Distributions, Complex Variables, and Fourier transforms. AddisonWesley, 1965. William L. Briggs and Van Emden Henson. The DFT: An Owners’ Manual for the Discrete Fourier Transform. Society for Industrial Mathematics, 1987. E.O. Brigham. The Fast Fourier Transform. Prentice-Hall, Englewood Cliffs, NJ, 1974. E.O. Brigham. Fast Fourier Transform and Its Applications. Prentice Hall,1988. L. Brillouin. Science and Information Theory. Academic Press, New York, 1962. B.C. Brookes. Sampling theorem for finite discrete distributions. Journal of Documentation, Vol. 31(1), pp. 26–35, 1975. Eli Brookner. Practical Phased Array Antenna Systems. Artech House Publishers, 1991. J.L. Brown, Jr. Anharmonic approximation and bandlimited signals. Information & Control, Vol. 10, pp. 409–418, 1967. J.L. Brown, Jr. On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theorem. Journal Math. Anal. Applied, Vol. 18, pp. 75–84, 1967; Erratum, Vol. 21, p. 699, 1968. J.L. Brown, Jr. A least upper bound for aliasing error. IEEE Transactions Automatic Control, Vol. AC-13, pp. 754–755, 1968. J.L. Brown, Jr. Sampling theorem for finite energy signals. IRE Transactions on Information Theory, Vol. IT-14, pp. 818–819, 1968. J.L. Brown, Jr. Bounds for truncation error in sampling expansions of bandlimited signals. IRE Transactions Information Theory, Vol. IT-15, pp. 669–671, 1969. J.L. Brown, Jr. Truncation error for bandlimited random processes. Inform. Sci., Vol. 1, pp. 261–272, 1969. J.L. Brown, Jr. Uniform linear prediction of bandlimited processes from past samples. IEEE Transactions Information Theory, Vol. IT-18, pp. 662–664, 1972. J.L. Brown, Jr. On mean-square aliasing error in the cardinal series expansion of random processes. IEEE Transactions Information Theory, Vol. IT-24, pp. 254–256, 1978. J.L. Brown, Jr. Comments on energy processing techniques for stress wave emission signals. Journal Acoust. Society America, Vol. 67, p. 717, 1980. J.L. Brown, Jr. First-order sampling of bandpass signals: a new approach. IEEE Transactions Information Theory, Vol. IT-26, pp. 613–615, 1980. J.L. Brown, Jr. Sampling bandlimited periodic signals – an application of the DFT. IEEE Transactions Education, Vol. E-23, pp. 205–206, 1980. J.L. Brown, Jr. A simplified approach to optimum quadrature sampling. Journal Acoust. Society America, Vol. 67, pp. 1659–1662, 1980.

REFERENCES

687

[177] [178] [179] [180] [181] [182] [183] [184] [185] [186] [187] [188] [189] [190] [191] [192] [193] [194]
[195] [196] [197] [198]
[199]
[200]
[201]
[202]

J.L. Brown, Jr. Multi-channel sampling of low-pass signals. IEEE Transactions Circuits & Systems, Vol. CAS-28, pp. 101–106, 1981. J.L. Brown, Jr. Cauchy and polar-sampling theorems. Journal of the Optical Society America A, Vol. 1, pp. 1054–1056, 1984. J.L. Brown, Jr. An RKHS analysis of sampling theorems for harmonic-limited signals. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-33, pp. 437–440, 1985. J.L. Brown, Jr. Sampling expansions for multiband signals. IEEE Transactions Acoust., Speech, Signal Processing, Vol. ASSP-33, pp. 312–315, 1985. J.L. Brown, Jr. On the prediction of bandlimited signal from past samples. Proceedings IEEE, Vol. 74, pp. 1596–1598, 1986. J.L. Brown, Jr. and O. Morean. Robust prediction of bandlimited signals from past samples. IEEE Transactions Information Theory, Vol. IT-32, pp. 410–412, 1986. J.L. Brown, Jr. Sampling reconstruction of n-dimensional bandlimited images after multilinear filtering. IEEE Transactions Circuits & Systems, Vol. CAS-36, pp. 1035–1038, 1989. J.L. Brown. Summation of certain series using the Shannon sampling theorem. IEEE Transactions on Education, Vol. 33(4), pp. 337–340, 1990. W.M. Brown. Fourier’s integral. Proceedings Edinburgh Math. Society, Vol. 34, pp. 3–10, 1915–1916. W.M. Brown. On a class of factorial series. Proceedings London Math. Society, Vol. 2, pp. 149–171, 1924. W.M. Brown. Optimum prefiltering of sampled data. IRE Transactions Information Theory, Vol. IT-7, pp. 269–270, 1961. W.M. Brown. Sampling with random jitter. Journal SIAM, Vol. 2, pp. 460–473, 1961. N.G. de Bruijn. A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence. Nieuw Arch. Wiskunde (3), Vol. 21, 205–280, 1973. O. Bryngdahl. Image formation using self-imaging techniques. Journal of the Optical Society America, Vol. 63, pp. 416–419, 1973. O. Bryngdahl and F. Wyrowski. Digital holography. Computer generated holograms. In newblock Progress in Optics, North-Holland, Amsterdam, pp. 1–86, 1990. G.J. Buck and J.J. Gustincic. Resolution limitations of a finite aperture. IEEE Transactions Antennas & Propagation, Vol. AP-15, pp. 376–381, 1967. Aram Budak. Passive and Active Network Analysis and Synthesis, Waveland Press, 1991. Y.G. Bulychev and I.V. Burlai. Repeated differentiation of finite functions with the use of the sampling theorem in problems of control, estimation, and identification. Automation and Remote Control, Vol. 57(4), Part 1, pp. 499–509, 1996. J. Bures, P. Meyer, and G. Fernandez. Reconstitution d’un profil d’eclairement echantillonne par une legne de microphotodiodes. Optical Communication, pp. 39–44, 1979. Tilman Butz. Fourier Transformation for Pedestrians (Fourier Series). Springer, 2005. P.L. Butzer. A survey of the Whittaker-Shannon sampling theorem and some of its extensions. Journal Math. Res. Exposition, Vol. 3, pp. 185–212, 1983. P.L. Butzer. The Shannon sampling theorem and some of its generalizations. An Overview. in Constructive Function Theory, Proceedings Conf. Varna, Bulgaria, June 1–5, 1981; Bl. Sendov et al., eds., Publishing House Bulgarian Academy of Science., Sofia, pp. 258–274, 1983. P.L. Butzer. Some recent applications of functional analysis to approximation theory. (Proc. Euler Colloquium Berlin, May 1983; Eds: E. Knobloch et al). In: Zum Werk Leonhard Eulers. Birkhäuser, Basel, pp. 133–155, 1984. P.L. Butzer and W. Engels. Dyadic calculus and sampling theorems for functions with multidimensional domain, I. General theory. Information & Control, Vol. 52, pp. 333–351, 1982. P.L. Butzer and W. Engels. Dyadic calculus and sampling theorems for functions with multidimensional domain, II. Applications to dyadic sampling representations. Information & Control, Vol. 52, pp. 352–363, 1982. P.L. Butzer and W. Engels. On the implementation of the Shannon sampling series for bandlimited signals. IEEE Transactions Information Theory, Vol. IT-29, pp. 314–318, 1983.

688

REFERENCES

[203] [204] [205] [206] [207]
[208] [209] [210]
[211]
[212] [213] [214] [215] [216] [217] [218] [219] [220] [221] [222]

P.L. Butzer, W. Engels, S. Ries, and R.L. Stens. The Shannon sampling series and the reconstruction of signals in terms of linear, quadratic and cubic splines. SIAM J. Applied Math., Vol. 46, pp. 299–323, 1986. P.L. Butzer, W. Engels, and U. Scheben. Magnitude of the truncation error in sampling expansions of bandlimited signals. IEEE Transactions Acoust., Speech, Signal Processing. ASSP-30, pp. 906–912, 1982. P.L. Butzer and G. Hinsen. Reconstruction of bounded signals from pseudo-periodic irregularly spaced samples. Signal Processing, Vol. 17, pp. 1–17, 1988. P.L. Butzer and G. Hinsen. Two-dimensional nonuniform sampling expansions – an iterative approach I, II. Applied Anal., Vol. 32, pp. 53–85, 1989. P.L. Butzer and C. Markett. The Poisson summation formula for orthogonal systems. In Anniversary Volume on Approximation Theory and Functional Analysis (Proceedings Conf. Math. Res. Institute Oberwolfach, Black Forest; Eds. Butzer, Stens, Nagy) Birkhäuser Verlag Basel - Stuttgart - Boston, = ISNM Vol. 65, pp. 595–601, 1984. P.L. Butzer and R.J. Nessel. Contributions to the theory of saturation for singular integrals in several variables I. General theory. Nederland Akad. Wetensch. Proceedings Ser. A, Vol. 69 and Indag. Math., Vol. 28, pp. 515–531, 1966. P.L. Butzer and R.J. Nessel. Fourier Analysis and Approximation Vol. I: One-Dimensional Theory. Birkhäuser Verlag, Basel, Academic Press, New York, 1971. P.L. Butzer, S. Ries, and R.L. Stens. The Whittaker-Shannon sampling theorem, related theorems and extensions; a survey. In Proceedings JIEEEC ’83 (Proceedings Jordan International Electrical and Electronic Engineering Conference, Amman, Jordan), pp. 50–56, 1983. P.L. Butzer, S. Ries, and R.L. Stens. Shannon’s sampling theorem, Cauchy’s integral formula and related results. In Anniversary Volume on Approximation Theory and Functional Analysis (Proceedings Conf. Math. Res. Institute Oberwolfach, Black Forest) Eds. Butzer Stens, and Nagy Basel - Stuttgart - Boston: Birkhäuser Verlag = ISNM Vol. 65, pp. 363–377, 1984. P.L. Butzer, S. Ries, and R.L. Stens. Approximation of continuous and discontinuous functions by generalized sampling series. Journal Approx. Theory, Vol. 50, pp. 25–39, 1987. P.L. Butzer, M. Schmidt, E.L. Stark, and L. Vogt. Central factorial numbers; their main properties and some applications. Num. Funct. Anal. Optim. Vol. 10, pp. 419–488, 1989. P.L. Butzer and M. Schmidt. Central factorial numbers and their role in finite difference calculus and approximation. Proceedings Conf. on Approximation Theory, Kecskemét, Hungary. Colloquia Mathematica Societatis János Bolyai, 1990. P.L. Butzer and W. Splettstößer. Approximation und Interpolation durch verallgemeinerte Abtastsummen. Forschungsberichte No. 2515, Landes Nordrhein-Westfalen, Köln-Opladen, 1977. P.L. Butzer and W. Splettstößer. A sampling theorem for duration-limited functions with error estimates. Information & Control, Vol. 34, pp. 55–65, 1977. P.L. Butzer and W. Splettstößer. Sampling principle for duration-limited signals and dyadic Walsh analysis. Inform. Sci., Vol. 14, pp. 93–106, 1978. P.L. Butzer and W. Splettstößer. On quantization, truncation and jitter errors in the sampling theorem and its generalizations. Signal Processing, Vol. 2, pp. 101–102, 1980. P.L. Butzer, W. Splettstößer, and R.L. Stens. The sampling theorem and linear prediction in signal analysis. Jahresber. Deutsch Math.–Verein. Vol. 90, pp. 1–70, 1988. P.L. Butzer and R.L. Stens. Index of Papers on Signal Theory: 1972–1989. Lehrstuhl A für Mathematik, Aachen University of Technology, Aachen, Germany, 1990. P.L. Butzer and R.L. Stens. The Euler-Maclaurin summation formula, the sampling theorem, and approximate integration over the real axis. Linear Algebra Applications, Vol. 52/53, pp. 141–155, 1983. P.L. Butzer and R.L. Stens. The Poisson summation formula, Whittaker’s cardinal series and approximate integration. In Proceedings Second Edmonton Conference on Approximation Theory (Eds., Z. Ditzian, et al.) American Math. Society Providence, Rhode Island: = Canadian Math Society Proceedings, Vol. 3, pp. 19–36, 1983.

Preparing to load PDF file. please wait...

0 of 0
100%
Handbook of Fourier Analysis & Its Applications